STABILITY POPULATION ASSAY: METAL DISCS/METAL STRIPS/WIRES

LOT \#
CARRIER (circle one): Strip \# \qquad
ORGANISM (circle one): B. atrophaeus Other:

PROCEDURE:

1.0 Aseptically transfer 1 disc, strip or wire into a water blank containing 9.9 ml sterile, processed water with 0.1 ml of Tween 80 and 1 ml of 3 mm sterile glass beads. Vortex for 2 minutes. Place in refrigerator overnight.
2. Remove 10 ml tube from refrigerator and vortex for 2 minutes. Insert into sonicator (38.5 40.5 KHz , full wave industrial stack transducer) for 10 minutes.
3.0 Heat shock tubes in a water bath (10 minutes at $80^{\circ}-85^{\circ} \mathrm{C}$ for B. atrophaeus, 15 minutes at $95^{\circ} 100^{\circ} \mathrm{C}$ for G. stearothermophilus.) Immediately cool tubes in a water bath of $0^{\circ}-4^{\circ} \mathrm{C}$.

Start Time/Temperature: \qquad I \qquad ${ }^{\circ} \mathrm{C}$ End Time:

Initial and Date:

\qquad 1
4.0 Vortex the tube for 1 minute. IMPORTANT: Make sure that metal carrier does not get stuck in the tube during vortexing. The carrier must flow freely with the glass bead. Prior to performing serial dilutions, visually check to make sure that the spore deposit has been completely removed from the carrier.
5.0 Perform serial dilutions by pipetting out 1.0 ml of the aliquot into another sterile, screwcapped 10 ml test tube containing 9.0 ml of sterile, processed water. Repeat from step 3 until desired dilution factor is reached.
6.0 From the next-to-the-last dilution, pipette out 1.0 ml into each of three petri plates. Repeat for final dilution.
7.0 Within 20 minutes, add to each plate approximately 20 ml of TSA, pre-sterilized and cooled to $47^{\circ} \pm 2^{\circ} \mathrm{C}$. Swirl to distribute spores evenly in agar and allow to solidify.

TSA Temperature: \qquad ${ }^{\circ} \mathrm{C} \quad$ Initial and Date: \qquad I
8.0 Invert and incubate the plates $\left(30^{\circ}-35^{\circ} \mathrm{C}\right.$ for B. atrophaeus; $55^{\circ}-60^{\circ} \mathrm{C}$ for G. stearothermophilus).

Incubation Start Time/Initial \& Date: \qquad I Incubator \#:
9.0 Examine all plates at $24(\pm 1)$ hours. Record on the back the number of colony forming units (CFU's) per plate. Record the average on the following page.
10.0 Calculate the average number of CFU's per carrier from the above data by using the formulas on the following page:

Performed By: Date: \qquad

STABILITY POPULATION ASSAY: METAL DISCS/METAL STRIPS/WIRES

Total @ 48 hrs / number of plates counted x DF = CFU/spore carrier DF= Dilution factor (absolute value of the reciprocal of the dilution)
$A V=$ Average number of colonies per spore carrier
Incubation End Time/Initial \& Date: \qquad I

CFU COUNTS AT 24 HOURS

\# dilutions \qquad
24hrs Plates 1. \qquad 2. \qquad 3 \qquad Total @ 24hours: \qquad
Total @ 24 hrs \qquad / $3 x$ \qquad (DF) $=$ \qquad (AV)CFU/Spore carrier

CFU COUNTS AT 24 HOURS

\# dilutions \qquad

24hrs Plates $1 . \quad$
Total @ 24 hrs___
\# of Dilutions = Dilution Factor
$1=10$
$2=100$
$3=1000$
$4=10000$
$5=100000$
$6=1000000$

Sum of the AV of both dilution / 2 =CFU/ Spore carrier
\qquad
x 10 CFU/Spore Carrier

Read By: \qquad Date: \qquad

